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Exciton Condensation Under High Magnetic Field
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The new results in the theory of Bose-Einstein condensation (BEC) of the two-dimensional (2D)
magnetoexcitons formed by the high-density electron—hole (e—h) pairs created on the semiconduc-
tor mono-layer in a strong perpendicular magnetic field are reviewed. One of them is the metastable
dielectric liquid phase (MDLP) formed by the 2D magnetoexcitons BEC-ed on the single-particle
state with sufficiently large values of the wave vector k, so that its product k/ with the magnetic
length | equals about k/ ~ 3—4. This_state was revealed in the conditions when the electrons and
holes are situated on the lowest Landau levels (LLLs) and the polarizability, of the Bose gas was
calculated on the base of the Anderson-type coherent excited states. They give rise to correlation
energy and to chemical potential displaying a nonmonotonous dependence on the filling factor v2
with a relative minimum and with'positive 'compressibility in its vicinity. The influence of the excited
Landau levels (ELLs) on the quantum states of the e—h system is due to the virtual quantum tran-
sitions of particles from the LLLs to ELLs during the Coulomb scattering processes and to their
subsequent return back. These quantum transitions were taken into account in the frame of the sec-
ond order perturbation theory giving rise to an effective Hamiltonian describing the supplementary
indirect interactions between the particles lying on the LLLs. This interaction is characterized by a
small parameter equal to the ratio r of the magnetoexciton ionization potential /., (0) to the Landau
quantization energy hw,. The parameter r =l (0)/hw,, decreases as H~"/2 with the increasing the
magnetic field strength H. The supplementary interaction is attractive, making the magnetoexcitons
in the Hartree approximation more robust. Nevertheless its exchange, Fock terms as well as the
Bogoliubov u—v transformation terms give rise to positive, repulsion-type contributions to the chemi-
cal potential. The Bose gas of magnetoexcitons with k = 0 becomes weakly nonideal when the ELLs
are taken into account. The collective elementary, excitations of two ground states corresponding to
BEC-ed magnetoexcitons forming either a'nonideal' Bose gas with k =0 or the MDLP with k/ ~ 3—4
were studied in the frame of the perturbation thelory with the infinitesimal parameter v2(1 —v?), cho-
sen as a product of the filling factor v2 and of the phase space filling factor (1 —v?2). The collective
elementary excitations in both cases'consist from the' exciton and plasmon branches. Due to the
presence of the condensate there are energy and quasi-energy branches. The self-energy parts
containing the unknown frequency in denominators increase the degree of the dispersion equations
and give rise to mixed exciton-plasmon and exciton—exciton elementary excitation branches.
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energy transfer in crystals. BEC can be induced by the resonant monochromatic photons. The results concerning the
Bose-Einstein condensation of excitons and biexcitons as well the coherent nonlinear optics with excitons were reviewed
in the monograph written together with Professor D. W. Snoke from Pittsburg University. Due to the collaboration with
Professor M. A. Liberman from: Uppsala University. last years the properties -of excitons in a strong magnetic field are
studied. The polarizability, correlation energy and the dielectric-liquid phase of Bose-Einstein condensed 2D magne-
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1. INTRODUCTION

In the past two decades a number of experimental'™ and
theoretical®™!® efforts have been dedicated to the study of
2D systems in a strong magnetic field. Lerner, Lozovik
and Dzynbenko>” firstly have been studied the coher-
ent pairing of electrons and holes resulting in the forma-
tion of the Bose—Einstein condensate (BEC-te) of excitons
in a single-particle state with wave vector kK = 0. Even
beyond the Hartree—Fock approximation, it was possible to
obtain an exact solution if the coupling to higher Landau
levels and the corresponding correlation energy can be
neglected. In this case the magnetoexcitons at 7' = 0 rep-
resent an ideal excitonic gas. In spite of the different from
zero Coulomb interaction between the electrons, between
the holes and between electrons and holes the resulting
interaction between two magnetoexcitons equals exactly to
zero. This extraordinary result is due to the fact that the
cyclotron orbits of the electron and hole forming exciton
with k =0 are exactly superposed one over other and com-
pletely coincide having the same radius in spite of the fact
that their cyclotron frequencies are different,if the elec-
tron and hole masses m,, m, are different. The radii of
the cyclotron orbits equal to /+/2 where [ is the magnetic
length and do not depend on the masses m;, where i =
e, h. The square magnetic length equals to > = hc/eH,
where H is the magnetic field strength. It is supposed to
be strong, so that the distances between the Landau lev-
els for electrons and for holes hw, ; = heH /m;c are much
bigger than the binding energy of the 2D exciton, and the
magnetic length / will be smaller than the radius a., of
2D exciton. The critical value of the magnetic field which
obeys to these conditions is

4elPu® m,m,, '
T R3gl = m,+m,
For typical values of the GaAs crystal g, = 12.56; <
m, = 0.067my; a, =100 A we can find H, = 6.57 T.
Another surprising result is that the droplets of the
metallic-type electron-hole liquid (EHL) have the minimal
energy per electron—hole (e—h) pair, when the local fill-
ing factor v of the lowest Landau level (LLL) is maximal
i.e., v = 1. The electron—hole droplets (EHD) can be con-
sidered as an aggregate of excitons sticked together.> %%°
The coupling to higher Landau levels makes the sys-
tem weakly nonideal,>® which allows the Berezinskii—
Kosterlitz—Thouless topological phase transition'*'® at
finite temperature. The results obtained in Refs. [5-7]
were reproduced in Ref. [8] on the basis of more simple
and transparent approach using the BCS-type wave func-
tion of the BEC-ed excitons and calculating the ground
state energy in the Hartree—Fock—Bogoliubov approxima-
tion (HEBA). But in the addition the authors® took into
account the indirect interaction between the particles lying
on the LLL due to their simultaneous virtual excitation
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during the Coulomb interaction to higher Landau levels
and their return back to the initial states. This indirect
interaction taken into account in the frame of HEBA is
equivalent to the calculation of the correlation energy of
the BEC-ed excitons when their polarizability is condi-
tioned by the excitation of the charged particles from the
LLL to higher Landau levels. We will return to this impor-
tant question below, reconsidering the problem and pre-
senting an effective Hamiltonian and concrete estimations
of the underlying physical effects.

The starting wave functions of the electrons and holes
on the 2D semiconductors structure in a strong perpendic-
ular magnetic field were determined in the Landau gauge
and are characterized by the numbers of the Landau lev-
els which appear due to the Landau quantization in one
direction of the plane and by the wave vector of the trans-
lational motion in another in-plane direction perpendicu-
lar to the previous one. The magnetic field transforms the
kinetic energy of the translational motion into the poten-
tial energy of the one dimensional oscillator with a shifted
equilibrium position, as it is'shown in Figure 1. The posi-
tion on the plane of the point of gyration of electron is
determined by its wave vector. There are N possible posi-
tions of the gyration point on the plane with surface area
S and this number equals to N = S/27 [, where 27 [? is
the area of the cyclotron orbit. Now it is useful to note that
the flux of the magnetic field through the quantum orbit
gives rise to the quantum of the magnetic flux ¢, which

1s determined as
¢0=H27712=hc/e; h=2mh

The total number of magnetic flux quanta through the
area surface S equals exactly to the degeneracy manifold

Fig. 1. The motion of the electron-hole pair in a strong perpendic-
ular magnetic field. The action of the Lorentz force on the counter-
propagating and co-propagating e—h pairs.
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Fig. 2. The electron-hole structure of the magnetoexciton.

N of the given Landau level. This detail will play a crucial
role when the states of the spatially separated electrons
and holes in the double quantum well structure in the pres-
ence of perpendicular electric and magnetic fields will be
discussed.

To visualize the behavior of the 2D e—h pair in a strong
magnetic field one can look on the Figure 1 where two
counter—propagating electron and hole in x, direction are
shifted by the Lorentz force in the same part of the y axis.
Their cyclotron orbits are overposed exactly in this case.
If the electron and hole take part together in the exciton
center of mass motion, each of them carrying some part of
the resultant wave vector k # 0, in this case their centers
of gyration and their cyclotron orbits are shifted by the
Lorentz force in opposite parts of the y axis.

The distance between the gyration points appears, which
determine the motional dipole moment g,

. [Hxk]
Po = H

L
It is an in-plane vector perpendicular to the wave vector

2 po= k2

of translational motion k. This case is also represented 'in !+

the Figure 1. The quantum orbits of the electron and thole
around their gyration points have the radii /+/2 and the
area surfaces 277/? indifferent on the value of the motional
dipole moment p,,.

The radii of the quantum orbits /2 and the dis-
tance between them p,, are completely determined by the
strong magnetic field and the exciton formation, is due
to e—h Coulomb interaction. The electron—hole structure
of the magnetoexciton is represented in the Figure 2.
Because the distance p, can be changed continuously by
changing the wave vector k, the binding energy of the
magnetoexciton also will change continuously giving rise
to the continuous energy band of relative e—h motion in
dependence on the wave vector k.

2. THE SCREENING EFFECTS AND
CORRELATION ENERGY

Nozieres and Comte'® proposed a method that permits one
to take into account simultaneously the binding processes
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and the screening effects in a system of the Bose con-
densed e—h pairs. It can be used both in the dense limit
ngal > 1, in which it essentially coincides with the
RPA'" for a two-component plasma, and in the dilute limit
neal < 1, in which it is able to describe in part the
Kramers polarizability of the neutral atomic excitons and
the van der Waals interaction between them.

The formulation of the method, called the generalized
RPA (GRPA), was accompanied by detailed explanations
of the underlying physics and is very instructive. As a main
element it contains the coherence factor (u,v, — uqvp)z,
which is typical of a BCS ground state. The main results
of the Nozieres and Comte paper'® concerning the Bose
condensed excitons are presented here.

Following the Pauli-Feynman theorem,'>? the ground-
state energy E, of the system of interacting e—h pairs can
be expressed in the form

2

‘ dA
Eo = By, + /Eint()\)T (1)
0

which ‘contains the kinetic energy E,;, of the Bose con-
densed ideal ‘e—h pairs without the Coulomb interaction
between them and the mean value of their Coulomb inter-
action E,(\) with a variable value of the electric charge
squared, A. The variational parameter A changes from zero
to the value of a real electron charge squared, ¢*. To calcu-
late E,, (A), one must also take into account the occurrence
of BEC.

The hypothetical e—h gas has the wave function |n(A))
that depends on A and the bare Coulomb interaction,

A 41re?

Vk()\)=Vk;§ “=ay ()
0

| The i free-particle energy spectra and their total number

do mot;depend on A. The Coulomb interaction can be
expressed in a factorized form
|

1 .
EZVk [pkpll _Ne_Nh] (3)
k

where the charge density p, and the full electron and hole
number operators N, and N, are

Pr = Za;+kap - Zb;+kbp
p p

. . 4

Ne=2ajuap; Nh=2b;bp )
p p

Here the spin-index summation is dropped. The expression
E,.(A) can be written as

En(D) = N, TV 43 SV X (6)),,

n(A)

L5)

The first term subtracts the self-interaction of electrons and
holes from the factorized part of the Coulomb interaction.
N,, is the mean number of e—h pairs or excitons N,, =

ex

Ne = Nh'

J. Nanoelectron. Optoelectron. 6, 393—419, 2011
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As noted by Nozieres and Comte, the screening correc-
tions can act on only real electron transitions allowed by
the exclusion principle, leaving the self-interaction term
untouched.

The matrix elements in Eq. (5) can be expressed in
terms of the imaginary part of the dynamical dielectric

constant g(k, w, A) as
1
6
" L(k, o, A)] ©

Relation (6) has been deduced in the theory of the linear
response of the system to a weak perturbation.'”?° In as
much as the system is characterized by the variable A,
e(k, w, M) also depends on A. The ground-state energy of
Eq. (1) then obtains the form

“ hdw
2

_ka(/\)2| Pk no

n(A)

Ey=Eq, —

vy e ]
)

The choice of the approximation for e(k, w, A) deter-
mines the accuracy of the determination of the energy E,.
For the one-component plasma and the electron—hole lig-
uid, the best results were obtained with the RPA together
with Hubbard-type corrections.!*!

In the framework of the RPA, the effective Coulomb
interaction between two electrons in a one-component
plasma can be represented as a sum of ring diagrams,
as in Figure 3. All the wavy lines in Figure 3 have the
same transfer wave vector k and the same contributions V.
The exchange Coulomb diagrams are neglected, Wthh are
characterized by the appearance of the contributions \J/
instead of V,, where k, is the Fermi wave vector. In the
dense limit, this approximation is valid because the actual
values of k are much less than those of k, and Vk_ <
V.. But in the intermediate metallic range, n.al ~ 1,
the exchange diagrams must be taken into account when
k exceeds k. In this case, the direct and the exchange
Coulomb interactions of two electrons with the same spin
projections cancel each other, and the Hubbard corrections
to the usual RPA are needed. Summing up the diagrams
in Figure 3, one obtains the effective Coulomb interaction
V. (k, w) and the dynamical dielectric constant e**A(k, w)
as follows

Vo (k, w) = m =Vi+ Vi [k, o)V, +

efPA(k, w) =1 -V, [[(k, w) = 1 +47a(k, )

®)

Here a(k, w) is the polarizability of the electron plasma,
whereas [[(k, w) is the polarization-loop contribution,
which can be expressed through the free-electron Green’s
functions G¢(p, »’) in the form

[k, 0) = ﬂ}Z/———G%%w)G%q+kw+w)
©)

In the case of Bose condensed e—h pairs, as a zeroth-
order Hamiltonian one must choose the expression H,
in Eq. (10).

= ST EP) (e, +B8)  (10)

where E(P) is the energy needed for the excitation of
one free e—h pair from the exciton Bose condensate. It
is diagonalized in the new quasiparticle operators «, and
B,, which are connected to the operators a, and b, of the
initial electrons and holes by relations:

—vB*

b, = u,B,+ vpap

Clp = MPO(

(11)

In virtue of this, there are four zeroth- order Green’s func-
tions constructed from the operators a b s b; and bp as
follows:

GUp. 1) = —i(T[a!(Da,(O)]), 5
GU(p, 1) = —i(T[b}(1)b,(0)])y ——>

e P (F)
GO(p, 1) = —i(T[a}(1)b] (0)])g
éo(p’ 1= _i<T[b—p(t)ap(O)]>o <b—a>

Here one must calculate the time dependence of the oper-
ators a, and b, in the interaction representation and the
averaging by using the Hamiltonian H,, in Eq. (10) before
going from operators a, and b, to the new operators «,
and B,. The Fourier transforms of the Green’s function
(12) for the case m, = m,,, which is considered here, are

119 9% -

Fig. 3. The sum diagram containing the polarization loops in the RPA. Reprinted with permission from [19], D. Pines, Elementary Excitations in

Solids, Benjamin, New York (1963). © 1963, W. A. Benjamin.
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GY(p.w) = G)(p,w)

_ u, v
N |:hw+E(p)/2—i5 + hw—E(p)/2+i5i|

. _ (13)
G’(p.w) = G(p,w)

1 1
u"v”|:ha)+E(p)/2—i8_hw—E(p)/2+i8i|

In this case, the role of the simple polarization loop in
Figure 3 is played by a compound polarization loop, the
contribution of which consists of three terms,

Ik, w) =11,(k, w) + 11, (k, @) + 211, (k, w)  (14)

They correspond to the three simple polarization loops
represented in Figure 4. Two of them are determined by
the Green’s functions G%(g, ') and G)(g, '), whereas
the third one is determined by the anomalous functions

G°(q, ') and G°(q, ') as follows:

I, (k,w) = 11, (k, w)

=—i§7 hz:/

2(4,0)Go(g+k, 0 +w) (15)

I, (k,w) = —12/ @Go(q,w)Go(q—i—k o' +o)

As was determined by Nozieres and Comte, the summed
polarization contribution is

H(k, w) == (v, — uqvk+q)2

q

1
X |
|:hw+(E(k+q)+E(q))/2—i6 :
| 1
- 3] o
ho—(E(k+q)+E(q))/2+16
This determined the polarizability of the e—h system

dmalk, w) = -V, Il(k, ) (17)

After separation of the real and the imaginary parts of the
polarizability, one obtains the dispersional ¢, (k, w) and the

a a b b a a
a a b b b b

Fig. 4. Three polarization loops in the case of Bose condensed e—h
pairs. Reprinted with permission from [18], P. Nozieres and C. Comte,
J. Phys. 43, 1083 (1982). © 1982, IOP.
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absorptional &,(k, @) components of the dynamical dielec-
tric constant,

ek, w)=¢,(k, w)+ie,(k, w)

g (k,w) = 1+4ma,(k,w)=1-V,I1,(k,w)

B (0, — 10,0,V (EC+0)+ E(q)
= T (B g+ E ()2 e

&k, w) = 4oy (k,w)=—V, I, (k,w)
=TV Y (g gy —UyVesy)’

" |:5q<hw_E(k+q;+E(q)>

E(k+q)+E(61)>]

(18)

o| h
+<w+ >

The coherence factor (u,v, — uquq)2 is typical of a
BCS ground state. One can verify that for a steplike v,,
the polarizability «(k, ) reduces to the sum «,(k, w)+
aj,(k, w) of normal electron and hole polarizabilities.

To determine the ground-state energy of the Bose con-
densed e—h pairs, Nozieres and Comte substituted into
main formula (6) the expression for e(k, w, A) found in
the framework of the GRPA, of the form

e(k, w, ) = 1= V,()II(k, ) (19)

where the explicit dependence on A is due to the bare
Coulomb interaction constant V,(A). When Eq. (19) is
used, the following formula can be obtained:

EZ

e dA 1
_Im -
A ek, w, A)

kH2(k’ (U)

1-VII,(k, w) (20)

i| = arctan

If one assumes that |, (k, w)/e,(k, w)| < 1 and substitutes

arctan x by x, formula (7) takes the form
N, ex Z Vk

hdw

Ey = Eg,—

I, (k, )
1-VII,(k, w)

-2 f @1
To obtain the ground-state energy in the HFBA, it
is enough to neglect the polarizability V, (A)II,(k, w)
compared with unity in the denominator of formula (21).
Then Eygg is

ka"' ZVkZ(”Hq Vg ”qvk+q)2

(22)
One can represent the ground-state energy as a sum of two
terms. One of them is determined in the HFBA and the
second, additional part is called a correlation energy, E,
where E) = Eypg + E oy

Eypg = Eyin —

corr?
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3. POLARIZABILITY, CORRELATION
ENERGY, AND DIELECTRIC LIQUID
PHASE OF BOSE-EINSTEIN
CONDENSATE OF TWO-DIMENSIONAL
EXCITONS IN A STRONG
PERPENDICULAR MAGNETIC FIELD

The numbers of electrons and holes which occupy the
lowest Landau levels are determined by the experimental
conditions, e.g., the generation rate due to laser excitation
and the exciton recombination rate. Assuming an quasiper-
manent population with an equal number of electrons and
holes, their quasiequilibrium states are characterized by
the chemical potentials u, and u;,. The energy of electrons
and holes as well as their chemical potentials are measured
relative to their lowest Landau levels. The exciton forma-
tion reaction e + h <> ex implies the relation between the
chemical potentials w, +u, = W,,

The coherent macroscopic state corresponding to Bose-
Einstein condensation of correlated electron-hole pairs-in
a single-particle state with the wave'vector k' can be'intro-
duced following Keldysh—Kozlov—Kopaev method (KKK
method)?> 3 by applying the unitary transformation®2%24

D(y/N,) = exp [\/N,,(d] —d,)]

= ]_[exp [\/Zﬂlznex(e_ikytlzaltx/2+tbzx/2—t
t

- eik“tl_bkx/zftakx/Zth)] (23)
where
NCX/N = 277[2”6)(7 nCX = CX/S (24)
Following the Refs. [23,24] we introduced the BCS-type
wave function of the new coherent macroscopic state act-
ing on the electron-hole vacuum state |0) by the qnlitary
transformation operator D(/N,,) J ;

|, (k) = D(VN,,) 10)
= 1_[ (u+ ve—”‘""’zazx/zﬂbzl/z_,) [0) (25)

where the coefficients u and v are

g=+2mln,, uW+v'=1

(26)

u=Cosg, v=Sing,

The transformed Hamiltonian is

i = DN D' (/) @

For this Hamiltonian, the new ground state wave function
plays the same role as the initial vacuum state |0) for the
Hamiltonian H,

H|,(k)) = DHD'D|0) = DH|0) =0 (28)

The unitary transformation of the Hamiltonian H means
the unitary transformations of the operators a,,, b,

Da,D'=a,=ua,—v(p—k,/2)b, ,,_,

(29)
Db,D" =B, =ub,+v(k,/2—p) U 2-p

J. Nanoelectron. Optoelectron. 6, 393—419, 2011

where
v(r) = ve
v(t)v(s) = vu(t +5) (30)
vi(t) = v(—1)

and the inverse transformation is
s
ap = LtO(p +v (p - k,\'/z) ka—p

(31)
bp = qu - v(k!c/z_p) akxfp

The average numbers of the electrons and holes in the new
ground state at 7 =0 can be determined from equalities

(¢g(k)| a;al’ I‘pg(k» = <¢g(k)| b;bp Ilpg(k)) =’ (32)

This expression means that the total average numbers of
electrons, holes and excitons are

No =Y (g ()] da, () =Nv>, n,=v*/2wl
4

(33)
The applicability of the theory is therefore restricted to
values of the filling factor v? defined by v? & Sinv?. This
restriction reflects the fact the excitons are the compound
particles composed from two fermions. Their creation and
annihilation operators can be considered as Bose opera-
tors'only at small concentrations of the electron—hole pairs.
Below we shall assume v> < 1/4.

Following the KKK method, the transformed
Hamiltonian A = DHD' must be expressed in terms of
the new operators «,,, a;, B, and B; using BogoliuPov’s
u, v transformations. In this way the Hamiltonian H can
be.représented in the form

H=U+H,+H (34)
|

The first term U does not contain operators «, and S,
and plays the role of the new ground state energy. The
second term H, is quadratic in the operators «, and S,
and appears as a result of transpositions of the new oper-
ators and their normal ordering. In this transposition, the
commutation relations of the Fermi operators «, and 8,
transform terms with four operators into quadratic terms.
The term H’ contains the remaining normal-ordered terms
with four operators, which is treated as a perturbation. The
term U can be represented as

U = NylEeo (k) = u] = No?[1; = L (K)]
= —Ne[Lox (k) + p] = No0?[1; = I (k)] (35)
where
N =NV, Egy (k) = =1 (k),
L (k) = Le ™ T4 (K212 /4) (36)
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The last term containing the correction proportional to fill-
ing factor v?, is negative due to the inequality I, (k) < I,.
The term H, contains diagonal quadratic terms as well as
the terms describing the creation and annihilation of the
new e—h pairs from the new vacuum state M,(k)). It has
the form

H, =Y E(k,v*,u)(ala,+blb,)

p

- Z[uv(kx/z - p)¢(k’ U27 /‘L)ka—pap

+uv(p—k /2)P(k, v, waj B ] (37)
where
E(k,v*, p) = 2u*v* L (k)
+ 1,0 —u0?) —u(u> —v?)/2 (38)

and
Wk, VP ) = 20T o L) (0 = 7) =g (39)

It is seen from the Hamiltonian H, that the new quasi-
particles described by the operators @, and 3, can appear
spontaneously from the new vacuum state as a pair with
total momentum k., which coincides with the translational
wave vector of the Bose-Einstein condensate of magne-
toexcitons. Such terms in the Hamiltonian and the corre-
sponding diagrams are called dangerous ones and make
the new vacuum state unstable. To avoid this instability,
the condition of compensation of the dangerous diagrams
is used. In the Hartree-Fock-Bogoliubov approximation,
when only the dangerous diagrams in H, are taken into
account, the condition of their compensation is

Pk, v?, w) =0

This condition determines the unknown parameter of the
theory, namely the chemical potential w of the system. In
the Hartree—-Fock—Bogoliubov approximation it is

IU’HFB = Eex(k) - 2vz[ll - Iex(k)]
= _Iex(k) - 21)2[11 - Iex(k)] (41)

R

This condition introduces the breaking of the u(1) gauge
symmetry of the initial Hamiltonian H and makes
nonequivalent its ground state and the new ground state U.
With the help of uf™ we can determine self-consistently
the ground state energy U and the energy of the single-
particle elementary excitations, which in the given approx-
imation are

1
UM = N’ = I ()], E(k, %, ) = S Eey (k)
(42)

As one can see, the single-particle elementary excitation
has an energy spectrum without dispersion. It does not

400

depend on the wave vectors p or k, — p of the electron
or of the hole appearing from the new vacuum state, and
for each particle is equal exactly to one half of the ion-
ization energy of the condensed excitons. To excite one
electron-hole pair from the vacuum, the energy I, (k) is
required, because it is equivalent to an unbound single
exciton with the wave vector k. The absence of disper-
sion reflects the absence of the kinetic energy of the elec-
trons and holes in the lowest Landau level. It was shown
Refs. [8,24] that in the frame of the linearized equations
of the motion for the electron and hole density operators
there are no plasma oscillations in the case k = 0, whereas
the dispersion relation of the collective excitations in this
case is given by the exciton dispersion relation E,, (k) —
E..(0). These results will be generalized when condensa-
tion of excitons with dipole moments occurs. In this case,
the ground state energy can be determined with BCS-type
wave functions by the expression

E (k) = (¢, (k)| H ¢, (k))
= _szlex(k) _NU4[11 _Iex(k)] (43)

It was obtained in the frame of the Hartree—Fock approx-
imation. Its derivative dE,(k)/dN,, determines the chem-
ical potential wff™® in full accordance with Eq. (41),
whereas the rate E,(k)/N,, characterizes the mean energy
per one exciton

E, (k)
N

ex

= Eex(k) - vz[Eex(k) - Eex(o)]

= Eex(k) - Uz[ll
HFB
Eg(k) = U+M Nex

_Iex(k)]’ (44)

 Below we show that this result can be extended beyond

the Hartree—Fock—Bogoliubov approximation, taking into
consideration the polarizability of the Bose-Einstein con-
d_epsed magnetoexcitons, at least for a symmetric 2D
model.

The coherent excited states of the Bose-condensed mag-
netoexcitons can be constructed following the method pro-
posed by Anderson in the theory of superconductivity.?’
The excited state can be obtained by acting with the elec-
tron part of the density fluctuation operator on the ground
state wave function,

W (g£0,/2)) =a,.p nay o pl (k)  (45)

Using the operators «, and ,, the u—v transformation,
and taking into account

|, (k)) = B, |, (k) =0 (46)
this function can be reduced to
¥(q£0./2))
=[v0(=Q)Br,—4-0.2Bl —gr0.p F V(4 =k, /2= 0,/2)
X0 2B —g-0.2] [ (K) (47)
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Taking into account that Q, is different from zero, one
can simplify last equation neglecting the first term in the
right hand side. The set of functions obeys the following
orthogonality and normalization conditions

W (p£P/D)| (q£0,/2)) =u*v*8,(P,. )8, (p. q)
(48)
The excitation energy in the Hartree—Fock—Bogoliubov

approximation can be found using the H, part of the
Hamiltonian

m=y "0 o, 158) )

and equals
W (£ 0. /) Hul (g% 0,/2))
2) =
B0/ = == 0 /)@= 0./2))
= L(k)

(50)

The excitation energy of this state equals the ionization
potential of Bose-condensed magnetoexcitons with wave
vector k. It does not depend on the wave vectors g and
Q,, which characterize the excited state. The excitation
energy and the energy spectrum of single-particle elemen-
tary excitations are the same for the full set of the excited
states and have no dispersion.

We also introduce the excited states generated by the
fluctuation of the hole density and by the action of the
corresponding operator on the ground state wave function

|, (K))
" (-p£P,/2))
= [vu(Px)akm,_,)x/,zoz;‘;mﬁpx/2 +uv(p+k,J2 |
+P/2) i o Blyie ]| () (51)

In a similar way, the excited wave functions generated by
the pair of electron and hole creation operators are intro-
duced in the form

o)

=y 02D i psrg 1 (K)) (52)

The matrix elements of the density operators can be cal-
culated using these excited-state wave functions

2

[(Po)nol® = Ii(lﬁe(piPx/Z)lpgllﬁg(k)) (53)

and they determine the polarizability of the system. In our
case

ol (k) =3¢ (| (qF 0,/2))— ¥ (—aF 0./2)))
(54)
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We shall calculate the polarizability in the approxima-
tion of a weak response to the external longitudinal
perturbation.'®?® In the case of a 2D structure with
Hamiltonian of the form (3), the perturbation caused by
an external probe charge can be written in the form

ez —iw
Hext(t) = _ZWQI:pext(Q7w)pTQe !
+p5(Q.0)ppe ™| (55)

The specific properties of a 2D structure appear due to the
Coulomb interaction coefficient Wy, which differs essen-
tially from the case of 3D structure. Substituting (53) into
a general expression for the polarizability, we find

47Ta5'F(Q,w)
__%
-5y

This expression can be rewritten as

|(pTQ)n,O|2 _ |(PQ)n,o|2
0—w,,+id wto,,+id

| 0

41TagF(Q, )

= —du*v? e—ze’Qzlz/ZSin2 Mlz
&*|Q| 2

1 1
x [hw—lex(k)—i-ié} hw+Iex(k)+i8:| 57)
The same result for the polarizability can be obtained from
another possible set of excitations. The polarizability has a
resonance frequency equal to the ionization potential I, (k)
of the magnetoexciton with dipole moment p,=k/*>. The
polarizability vanishes when the wave vector k approaches
zero, and the magnetoexcitons behave as an ideal nonin-

|teracting gas. The polarizability is an anisotropic function

on the wave vector Q and decreases exponentially when
Q' goes'to infinity.
{ The real and imaginary parts of the polarizability are

47TagF(Q, ) =47Taf){ﬁ(Q, ) +i4wa3§(Q, )

k,0.—k
477“31;(Q5 w)= —4u2U2(WQN) sin’ (Mﬂ)

2
rf Pf
[hw — I (k) ho+1(k) ] (58)
el (0. ) =smiv (W s’ (L2 5 )

x{8[hw—Io (k)] =6[hw+ 1 ()]}

The symbol (Pf) denotes that the singular term which may
appear in the expression 47af’ (Q, ) at the point hw=
I, (k) must be removed. The polarizability 47af*(Q,w)
determines the dielectric constant &(Q, ), which in the
Hartree—Fock (HF) approximation is

1

m =1—4’7TOZ(I;IF(Q,(1))

(59)
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contrary to the random phase approximation (RPA), where
the expression for the dielectric constant is different.

The dielectric constant £(Q, w) obtained by this method
is denoted £**A(Q, w):

(0, 0)=1+4maf" (0, ) (60)
Now we calculate the correlation energy of the condensed
excitons, taking into account the screening effects. As was
mentioned in the previous section, for this purpose it is
convenient to use the method proposed in Ref. [18], which
allows us consider simultaneously the binding processes
and the screening effects in a system of Bose condensed
e—h pairs, which can be used both in the cases of dense
and dilute limits of exciton concentrations. The formula-
tion of this method, called the generalized random-phase
approximation (GRPA), is based on the Pauli-Feynman
theorem!”™" for the ground state energy. In the case of
interacting 2D e—h pairs, their ground state energy; £ also
can be expressed in the form (1).

Here E,;, is the kinetic energy of the Bose condensed
ideal e—h pairs without Coulomb interaction between
them, and E,(A) is the mean value of the Coulomb inter-
action, with A being the square electric charge, which
changes from zero to the real value e*. For the gas of
electrons and holes occupying the lowest Landau levels
only the Coulomb interaction term enters the Hamiltonian.
Applying the GRPA method, we introduce the hypothetical
gas with the bare Coulomb interaction W,(A)=W,(A/ée?)
and wave functions |n(A)). Then the interaction part of the
ground state energy is

/ Halh), 1Y)

0 i

The expression E;, (A) takes the form

E,(M)=— ZWQ(/\)+ ZWQ(/\)Z|(pQ)nO|2 (62)

n(A)

which can be expressed through the imaginary part of the
polarizability 4maf"(Q,w) obtained in the Hartree-Fock
approximation.

For the ground state energy we find

T hdw 1
NaZ Vo~ Z/ M e ©Y
Representing £(Q, w, A) in the form
S(Q’w’A)ZSI(Q»w’/\)+i82(Q’w’A)
sl(Q,w,A)=1+4wa3ﬁ(Q,w,A) (64)

£,(0, w,\) =47al5 (0, w,A)
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and supposing &,(Q,w,A)~A and &(Q,w,\)~1, we
obtain

ez@ m 1 = — arctanM
Ao - 500 e (0 0)
EZ(Q?w)
R e 65
2(0.0) (65)

Substituting Eq. (64) into this expression and expanding it
in series up to the first order in 47af, (Q, w), inclusively
we obtain

4ol (0, w)
[1+47Ta (0, w)]

~ dmall

(Q w)—2x4maf (Q )

x 4oy (Q, ) (66)

The first term in the series expansion corresponds
to Hartree—-Fock—Bogoliubov approximation, whereas the
second term determines the correlation energy

=_2Z / 20 4wl (0, w)AmalT (0, @) (67)

As explained above, only the real part of the polarizabil-
ity 4ma! (Q w), which contains the denominator Aw+
L. (k), glves a nonvanishing contribution to the correlation
energy at the point Aw =1, (k). At this point the denom-
inator_equals 21, (k), which means that the correlation
energy is due to the virtual excitation of two quasiparti-
cle pairs out of the mean-field ground state |¢g(k)). The
correlation energy is negative due to the screening effects
and therefore lowers the energy of the interacting system.
However, this reduction is not monotonic and the local

(minimum of the correlation energy depends on the value

of the filling factor v?.
We obtain the correlation energy in the form

T 5

8(u2v2) 2 4<k7Q —k.Q )

E.,, = — W, N) Sin*| 2= _*=¥2
I (k) §( oN) 2

N ()’ I}
= —(—) F(kl)
Vo L (k)
F(kl) can be presented through the modified Bessel func-
tion I,(z) as follows

(68)

F(kl)=34¢ X021 (P12 )2) —4e TR (P 12/8)  (69)
The total mean energy per e—h pair equals
_E(k)+E,

corr
corr T N
ex

e=e"1¢ (70)

The corresponding correction to the chemical potential is

dECDlT — d ECO]T
Hreorr = dN,, dv* N (71)
N, = Nv?

J. Nanoelectron. Optoelectron. 6, 393—419, 2011



Moskalenko et al.

Exciton Condensation Under High Magnetic Field

and the total value of the chemical potential is

po= P

= — 1, (k)—2v*[1,+ 1 (k)]
2 I’F (kl) 2 )
N (k) (1 )(l 2v ) (72)
The mean energy per particle and the chemical potential
versus the filling factor v? are shown in Figures 5 and
6. The first term in Eq. (72) gives the energy per exci-
ton in the Hartree—Fock—Bogoliubov approximation. For
small values of k/, the total energy and chemical poten-
tial, with the correlation corrections, are monotonic func-
tions of v?, and almost coincide with those found in the
frame of the HFBA. For larger k/, the total energy and
chemical potential deviate considerably from their values
in the HFBA and become nonmonotonic functions of v?
with a well-pronounced local minimum. This minimum
becomes deeper and more pronounced with the increase of
the dipole moment k/?, due'to the increase ‘of the coher-
ence factor and the decrease of the ionization potential
I (k).

At first, the local minimum of chemical potential
appears for kl=2.2; it becomes deeper with further
increase of kl. The relative minimum of the chemical
potential of the Bose-Einstein condensed magnetoexcitons
implies the formation of a metastable dielectric liquid
phase with positive compressibility in this range of filling
factor v2. At the values kl=4.6, I, (k)=0.181,, p,=4.61,
and v?=0.25, the minimum on the plot of the chemical
potential achieves the same value as at the limiting point
v>’=1. In spite of the fact that the curves in Figures 5
and 6 are extrapolated up to the point v>=1, it should be
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Fig. 5. Energy per e—h pair versus filling factor v2. Solid line: energy
per exciton at kl=4.6. Dashed line: energy per one exciton in the
Hartree—-Fock—Bogoliubov approximation. Dash-dotted line: energy per
e—h pair of the metallic EHL.
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Fig. 6. Chemical potential versus filling factor v?. Solid line: total
chemical potential of the condensed magnetoexcitons at kl =4.6. Dashed
line: chemical potential of the condensed magnetoexcitons in HFBA at
kl=4.6.

noticed that the applicability of the theory is limited by
the upper boundary given by v~ Sin*v.

4. COLLECTIVE ELEMENTARY
EXCITATIONS OF TWO-DIMENSIONAL
MAGNETOEXCITONS IN THE
BOSE-EINSTEIN CONDENSATION
STATE WITH k DIFFERENT FROM ZERO

The creation and annihilation operators of magnetoexci-
tons are two-particle operators reflecting the electron—hole

| (e=h) structure of the excitons. They are denoted below as

d*(p) and d(p), where p(p,,p,) is the two-dimensional
wave vector. There are also the density fluctuation oper-
ators| for electrons pe(Q) and for holes ph(Q) as well as
their linear combinations p(Q) and D(Q) They are deter-
mined below

i 1
Pe(Q) Ze & —(0,/2)%1+(0,/2)
A iQ, Pyt
pr(O)=2"¢V"bl o 1 bi o2
t

p(0)=p.(0)—p(—0)

o 3 R (73)
D(Q)=p.(Q)+p,(=0)
- 1 -
d'(P)= JN 5 e al e )
> l 2
d(P)= \/_Z B p _z+(1§/2)at+(1§/2)
V,=5.(0);  N,=p,(0)
p(0)=N,—N,; D(0)=N,+N,
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and are expressed through the Fermi creation and annihi-
lation operators a' » Ay for electrons and b;, bp for holes.
The e—h Fermi operators depend on two quantum num-
bers. In Landau gauge one of them is the wave number p
and the second one is the quantum number » of the Landau
level. In the lowest Landau level (LLL) approximation n
has only the value zero and its notation is dropped. The
wave number p enumerates the N-fold degenerate states
of the 2D electrons in a strong magnetic field. N can be
expressed through the layer surface area S and the mag-
netic length [ as follows: N=S/2#71?); [*=(hc)/(eH),
where H is the magnetic field strength. The operators
(73) obey to the following commutation relations, most of
which were discussed for the first time in the papers®-*

[ﬁ(ém(ﬁ)]=—zism(%)ﬁ<ﬁ+@

[d(p).d"(Q)] = 6,.(P.Q)
= % [iSin <—[P XZQ]ZIZ ) p(P—0)

+Cos (%) b(ﬁ—é)]

This list can be continued

p(.a@1=2sin( ALY 10)
P x 0.1

[ﬁ(ﬁ>,d+<é>]=—zism<[”_z

> >d+(—13+é) :

o 5
(05,4 @1=2005 XA ) G-y

- qx 71 2 > -
[D(P),d(Q)]= —chs(%y(sz)

One can observe that the density fluctuation operators (73)
with different wave vectors P and Q do not commute.
Their non-commutativity is related with the vorticity
which accompanies the presence of the strong magnetic
field and depends on the vector-product of two wave
vectors P and é and its projection on the direction of
the magnetic field [IBXQ] These properties consider-
ably influence on the structure of the equations of motion
for the operators (73) and determine new aspect of the
magneto-exciton-plasmon physics. Indeed in the case of
3D e—h plasma in the absence of the external magnetic
field the density fluctuation operators do commute.!® The
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magneto-exciton creation and annihilation operators d'(p)
and d (é) as in general case do not obey exactly to the
Bose commutation rule. Their deviation from it is propor-
tional to the density fluctuation operators p(P Q) and
D(P Q). The discussed above operators determine the
structure of the 2D e—h system Hamiltonian in the LLL
approximation. A

The starting Hamiltonian 7 in the quasi average theory
approximation (QATA)?! has the form

7 = S Wilp(0)p(~0) ¥, ¥y1 K, — o ,
0
—nV/N(e®d' (k) +e d(k)) (76)

The equations of motion for the operators (73) are obtained
using the commutation relations (74), (75). They are

d L
ih—-d(P) = [d(P). 7]
= (E(P)—)d(P)—nv/Ne'*5,,.(P.K)

~aiywgsin( X2 )i @ya -0

5
non( XR8P
+Cos( [P x K], lz) (f/ﬁ ) 77)

A d t d =

ifi=-d' (2K — P)

=[d'(2K —P),#]

=(a—EQK —P))d' 2K —P)+nv/Ne 5, (P,K)
K _ P A1 72

_ZiZWQSin<—[(2K P)XQ]Z1>

= 2
o p
xd'(2K —P—0)p(—0)
(P—K)

—mei¢ [iSin( [P Iz]zﬂ) P
2 VN

[PxK].I>\ D(P—K)
+Cos< > > N :|

d . - =
ih—p(P—K
’d;p( )
=[p(P—K),#]

=—iy W,Sin <—[(P_K;X QLF)

B
< [p(P—K —0)p(0)+H(0)p(P—K —0)]
—2in/NSin (W) [e%d(P)—e*d" (2K — P)]
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d A - =
ih—D(P—K
ih—D(P-K)
=[D(P-K),#]
P—K)x Q.12
=iy W,Sin <—[( ;X 2. )
]
x[p(Q)D(P~K ~0)+D(P~K~0)p(0)]
PxK],P?
+2n\/ﬁ Cos (%)
x[e#d(P)—e*d" (2K — P)]
Here
N, =v’N
(78)
Now we must pay attention to one important aspect of
these equations of motion, closely related with the non-
commutativity of the operators (73) expressed by the for-

mulas (74) and (75). Applying them one can prove the
equivalent expressions for the exciton operator d(P)

N=(Ex(K)—pv=(E(K)—@)v; v=v"

(E(P)—f)d(P)—2i 3 WgSin ([PXZQ]ZZ>,)(Q)d(ﬁ_Q)

Q

=—ﬂd<P>—iZW@Sin<“DX2QU) [p(Q)d(P=0)

0
+d(P—0)p(0)]=—(a+E(P))d(P)

<M>d(ﬁ—é>p<é)=-~ (79)

—2i) W;Sin 5

e N @

as well as for the density fluctuation operator p(P)

—ixwgsin( 22 )(50)6(P-0)+5(- 0)p(0)
0
[Px Q.1

=E(P)p(P) —2iZWQSin< 5

Q

)ﬁ(é)ﬁ(ﬁ—@

=—E(P)ﬁ(P)—2iZWQSin<“)X2Q]ZZZ>

0
xp(P—0)p(0) = (80)

They can be verified taking into account the relation
Px Q)1
ZZWQSinZ(%) —E(P) (81)

The quantum of the Coulomb energy E(P) is related with
the helicity and vorticity existing in the frame of electron—
hole (e—h) system in the presence of a strong perpendicular
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magnetic field. A full spectrum of these quanta with arbi-
trary wave vector P does exist not only in the case of e-h
system, but also in the case of pure electron or pure hole
systems. We are supposing that their origin is related with
the existence of N magnetic flux quanta ¢,=hc/e dis-
cussed in Ref. [32] in the case of FQHE. The flux quanta
enforce the creation of N vortices in the 2DEG, lead to
the creation of composite fermions and bosons, accompa-
nying the transport phenomena and so on.*> The unlim-
ited reservoir of the Coulomb interaction energy between
electrons in the presence of the magnetic field is charac-
terized by energy quanta E(P), which depend only on the
square electric charge e?> and magnetic length [ and does
not depend on the e—h densities. They could be named as
Coulomb magnetic energy quanta. In our previous paper
they were named as plasmon quanta, but on our opinion
it is better to conserve the name of plasmon quanta to the
intra-Landau level excitations whose energy depend on the
filling, factors.

Ags follows from the equalities (80), (81) the induced
by vortices the Coulomb magnetic energy quanta can be
added or substracted as a free part terms outside the non-
linear terms, if we will change simultaneously the corre-
sponding nonlinear terms.

In the case of matter interacting with the resonant laser
radiation with the frequency w, in the rotating reference
frame the energy of quasiparticles is changed by the pho-
ton quantum energy hw,. Such type of energy which
appears in the case of unlimited reservoir of energy is
named as quasi-energy.’* The new supplementary quasi-
energy branches give rise to many effects gathered by the
common mane as optical Stark effect.!” On our opinion
something similar takes place in the presence of a strong

I magneticifield, but in difference on the laser radiation with
| 7a well defined frequency w; =ck, and wave vector k, in

the case of a strong magnetic field there are a large spec-
tra'of frequencies and wave vectors. Adding or extracting
the quanta E(P) we can form many virtual complexes of
quasiparticles with different free energies. They can be
named as quasi-energy complexes. As we will see below
the most of them will have great damping rates and will be
physical meaningless. The choosing of the concrete forms
of equations of motion depends in great manner on the
theoretical methods, which we intend to apply.

We will apply below the Green’s function method.
In this case the free energy terms in the equation of motion
for operators as usual play the role of the proper energies
in zero order approximation. They can determine the zero-
order Green’s function, whereas the nonlinear terms can
be taken into account in higher order of the perturbation
theory. Of course, when the equations of motion for the
Green’s function are treated exactly in this case it is indif-
ferent which starting variant was selected, because all of
them are completely equivalent. But in reality it is impos-
sible to solve exactly the infinite chains of equations of
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motion for Green’s functions and some concrete approxi-
mations are inevitable.

Taking into account these considerations we have cho-
sen the equations of motion for the exciton creation and
annihilation operators d'(P),d(P) with a free energy term
accounted from the exciton chemical potential in the form
(E4(P)—p). E,(P) coincides with the energy of the
magnetoexciton without any corrections depending on the
exciton—exciton interaction, what means without concen-
tration corrections. The equations of motion for the den-
sity fluctuation operators p(ﬁ) and D(f’) were chosen in
the first variant of the Eq. (80) without free energy terms,
because the proper energies of the intra-lowest Landau
level excitations depend on the filling factors and can
not be represented by quanta E(P) in any forms. The
true expressions for the plasmon eigenenergies will appear
in the second order of the perturbation theory developed
on concentration parameter, and its value will depend on
v?(1 —v?). Another important consideration for the selec-
tion of the starting equations of motion having in view
the Green’s function method, is the damping rates of the
obtained elementary excitations. The imaginary parts of
the eigen-energies of the elementary excitations depend on
the real Coulomb scattering processes with the participa-
tions of the quasiparticles as well as on their free energies
which appear in zero order approximation. Below we will
show that in most cases the damping rates are of the same
order of magnitude as the corresponding real parts due the
absence of small parameter related with Coulomb energy.
It means that such elementary excitations can not exist and
have not any physical meaning.

Once again we can underline that it happens because
the Coulomb interaction energy can not be considered as
a small perturbation. In fact there is a unique possibility!to
chose the equations of motion for the operators p(f’) and
D(I3) as it was realized in our equations of motion. One
can represent different variants of equations of motion with
different free energy terms as corresponding to different
quasienergy complexes consisting from quasiparticles and
Coulomb magnetic quanta E(P). This suggestion is sup-
ported and induced by the well known concept of compos-
ite particles created by electrons and magnetic flux quanta
¢,* and by the supposition that their existence must be
evidenced also in another phenomena not so far from the
FQHE. But trying to do it, and verifying the consequences
posteriori we arrived to the conclusion that most of them
have great damping rates and do not exist. The unique
possibility to obtain in the frame of the Green’s func-
tion method the intra-LLL excitations of the plasmon type
without damping at all is the variant chosen by us and writ-
ten above in the frame of the equations of motion (77). But
for the magnetoexcitons some different quasienergy com-
plexes are possible. Here we will discuss only the variant
with an usual dispersion law. On the base of equations of
motion (77) the Green’s functions will be introduced and
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the chains of equations of motion for the Green’s functions
will be developed.

Following the equations of motion (77) we will intro-
duce four interconnected retarded Green’s functions at
T — (3536

Gy (P,1)=((d(P,1)d"(P,0)))
G, (P,1)=({d' (2K —P,1);d'(P,0)))

e ) I
They are determined by the relations
G(1)=((A(1); B(0))) = =if(1) ([A(1), BO)])
A(t):e(th)/hAe—(th)/ﬁ (83)

[A.B]=AB—BA

Where H is the Hamiltonian (76).

The average ( ) will be calculated at T=0 in HFB
approximation using the ground state wave function
|, (k)) (25). The time derivative of the Green’s function
is calculated as follows

o L d .
lhEG(t) = lﬁE«A(I)»B(O)»

= h(S(t)([A(O),I§(0)])+<<iﬁ%A(I);B(O)>>

v =he(C+([Aw). 7] BO))) (84)
By C will be denoted the average values, which do not
depend on 7. They are not needed in an explicit form for
the determination of the energy spectrum of the elementary
excitations.

Fourier transforms of the Green’s functions (82) will be
denoted as

G, (P, w)={{d(P)|d"(P))),
G (P, w)=((d"(2K —P)|d"(P))),,

, pPP=K)| .+ 5 >>
G;(P,w)=({——=—|d"(P (85)
sFoo=((PE )}
R D(P-K)| . - >>
Gu(P,w)=({——=—=|d"(P
WP ={(PE=E 0 @)
The two representations are related each-other
G(P,w)= /ei"”G(ﬁ,t)dt:/ei“’”‘s’G(ﬁ,t)dt
—0 0
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where the infinitesimal value 6 — 40 guarantees for the
retarded Green’s function G(f’,t) the convergence of the
integral in the interval (0, o).

The motion equation in the frequency representation can
be deduced on the base of Eq. (84)

/gwwh 4G (1)

h/muww d

twt ot

—lh/dtG(t)
= (hw+18)G(w)

—Cc+ f dt([A(r), A]; BO)))e (86)

—o0

The Green’s functions (85) will be named as one-operator
Green’s functions because they contain in the left hand
side of the vertical line only“one summary operator of
the types d(P), d'(P), p(P) and D(P). At the same time
these Green’s functions are two-particle Green’s functions,
because the summary operators (73) are expressed through
the products of two Fermi operators. In this sense the
Green'’s functions (85) are equivalent with the two-particle
Green’s functions introduced by Keldysh and Kozlov in
their fundamental paper,?? forming the base of the theory
of high density excitons in the electron-hole description.
But in difference on Ref. [22] we are using the summary
operators (74), which represent integrals on the wave vec-
tors of relative motions.

The equations of motion for the Green’s function (85)
are the following b

[ho~+a—E(P)+i8]G, (P, )
—c-2pwgsin( 2L ) (50 -d)la (7)),
o

, PxK].I? .
+ne"P[iSin<[ X2 I )GIS(P,U))/

+c05(“3xf]z’2)cl4<ﬁ,w>] (37)

[hw—ﬁ-f—E(Zk—ﬁ)‘f'iS]Gu(ﬁ’w)
, . ([2K—P)xQ].1
=C—-2iy W;Sin| ———————
(P
x((d' 2K P~ 0)p(~0)|d' (P)),
_ﬂei“’|:iSin<[[)><21{]Zl2>G13(ﬁ’w)

+cos( |

f’xlz],l2 o
2“)G14(P» w)]
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|by Zubarev>*

[Aw+i8]G (P, w)

0

([ 80s0 4 2 )

PxK].I? : . 4 -
—zmsm(%>[e-’*"Gll(P,w)—ewGu(P,w)]

[Aw+i8]G (P, w)
:C—iZWQSin(—[(P_K;X QLP)

0

<<[p(Q)—[) ( J’;_ 0

[)(13_13 é) +
#2250 @)
-|-27]COS<[PX2—K]'12)[ TG (P,w)—€“G (P, )]

The equation of motion (87) for one-operator Green’s
functions Glj(f’,w), where j=1,2,3,4, give rise to
new _two-operator (four partlcle) Green’s functlons of
the types ((H(Q)d(P—Q)|d!(P))),, ((d'(2K—P—0)
p(=0)|d (P))),, ((B(P—K—0))/VNp(Q)|d'(P))),
and (((D(P~K —0))/~/Nj(Q)|d' (P))), generated by
the nonlinear terms in the equations of motion (77) for
the operators (73). It is a well known situation described
in his review article. For these two-operator
Green’s functions of the first generation following the rule
(86) the new motion equations were deduced. This second
step in the frame of the given method will form the second
link of an infinite chain of motion equations. Both links
constructed in such a way will be exact in the frame of the
Hamiltonian (76). These new motion equations will contain
in their components new types of three-operator Green’s
functions of the first generation as well as new types of the
two-operator Green’s functions of the second generation,
and so on.

The truncation procedure was successfully applied in
the case of electron—phonon interaction not only for the
metals in normal states, but also for the superconductors.

It can be applied also in the case of Bose-Einstein con-
densed magnetoexcitons. This phenomenon was taken into
account for the very beginning by the Bogoliubov method
of quasiaverages. The calculations of the average values
of the products of two operators exctracted from the left-
hand side of the three-operator Green’s functions will be
made using the ground state wave function of the Bose-
Einstein condensed magnetoexcitons. On this base some
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supplementary simplifications of the cumbersome expres-
sions will be proposed.

After the truncations and linearizations the multi-
operator Green’s functions are expressed through the one-
operator Green’s function G, j(13, w), with j=1,2,3,4, and
their four equations of motion can be written in a close
form introducing the self-energy parts 3, (P w) as follows

4
ZGI_j(P’w)Ejk(P’w)ZCIk;

j=1

k=1,2,3,4  (88)

The most of the self-energy parts Eij(ﬁ,(u) contain
the average values of the two-operator products. They
were calculated using the ground state wave function
[, (k) (25).

Taking into account the exceptional role played by the
average value (ﬁ(é)ﬁ(—é)) it can be represented

K~ (O] 72
(ﬁ(é)ﬁ(—é))=4u2v21v51n2(%) (89)
In spite of the made approximations concerning the many
operator Green’s functions and the averages of the two-
operator products the obtained self-energy parts remain
cumbersome. But there is one possibility to radically sim-
plify the further calculations. It is related with the collinear
geometry of the experimental observation of the elemen-
tary excitations, when their propagation direction coincide
or is exactly opposite with the condensate wave vector k.
This geometry will be discussed in the next section.
The cumbersome dispersion equation is expressed in
general form by the determinant equation

det[3;(P,w)|=0; P=K+§ . 1(0)

It can be essentially simplified in collinear geométry, when
the wave vectors P of the elementary excitations, are par-
allel or antiparallel to the Bose-Einstein condensate wave
vector k. We will represent the wave vectors P in the form
k+q, accounting them from the condensate wave vec-

tor k. The relative wave vector g will be also collinear
to k. In this case the projections of the wave vector prod-
ucts [f’ x K ]. as well as all coefficients proportional to
Sin(([P x 1%]312)/2) and a half of the matrix elements
pI (P,w) in the Eq. (90) vanish. The determinant Eq. (90)
disintegrates in two independent equations. One of them
concerns only to optical plasmons and has a simple form
35(K+G;0)=0; [§xK],=0 ©n

whereas the second equation contains only the diago-
nal self-energy parts 3,,, 2,,, 2,, and the quasi-average
constant 7

S (KE+G,0)50,(K+§,0) 34 (K +§,0)
202 (K+G, 0)+3(K+G,0)=0 (92)
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It determines three interconnected branches. Two of them
describe the proper collective excitations of Bose-Einstein
condensed magnetoexcitons and the third branch concerns
the acoustical plasmons. In spite of the collinear condi-
tion [g x K ].=0, the Eqgs. (91) and (92) and their energy
spectra w(qg) are not invariant under the inversion opera-
tion when ¢ is substituted by —¢g, because in the system
does exist a well defined direction selected by the wave
vector k. By this reason the elementary excitations with
wave vector ¢ and —¢g have different energies.

The solutions of the dispersion Eq. (92) will be dis-
cussed in two limiting cases. One of them is the point
k=0, where the system behaves as an ideal Bose gas
when the excited Landau levels are neglected and another
case of considerable values of wave vectors kl/~3—4,
when the Bose-Einstein condensed 2D magnetoexcitons
can exist in a form of metastable dielectric liquid phase
or of dielectric droplets. But in all cases the average value
(ﬁ( Q) ﬁ(—é)) and other similar expressions are determined
in HEBA by the formulas (89). They are characterized
by -a- coherence factor Sinz(([lzxé]zlz) /2), which van-
ishes in the point k=0. All contributions to the self-energy
parts proportional to square of Coulomb interaction matrix
elements Wj multiplied by the averages (ﬁ(é)ﬁ(—é))
vanish also making a 2D magnetoexciton system a pure
ideal gas, when the influence of the excited Landau lev-
els is neglected. This unusual result was revealed for the
first.time by Lerner and Lozovik>”’ and was confirmed by
Paquet et al.® In the case k=0 because the vanishing of
the averages (90) the self-energy parts become

o1 (P w)=ho+ji—E(P)
0y (P,0)=ho—fi+E(—P) (93)
0, (P, 0)=ho

and-the excitonic part of the dispersion relation as well the
acoustic plasmon frequency look as

hwex(P) ::t\/(la’_ E(P))2+4772
how,(P)=0

(94)

The values g=E(k)(1-2v*) and n=(E(k)—p)v=
2E(k)v* in the point k=0 turn to vanish, ie., g=n=
E(0)=0, what leads to the free magnetoexciton disper-
sion law Aw, (P)==xE(P), and coincides with the result
obtained earlier in Ref. [8]. The acoustical plasmon branch
as well as the optical branch have frequencies equal to
zero. The case k0, but v=0, can be obtained from the
previous formula because, as earlier, the averages (89) as
well as the parameter ) are vanishing, whereas the chem-
ical potential is different from zero i.e., f=E (k).

In this case the exciton dispersion law in collinear
geometry with P=k+ gCosa has the form

hw. (q)==%(E(k+qCosa)—E(k)); Cosa==%1, ¢g>0
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The both dependences are represented in Figure 7, where
x=gql was introduced.

The case of k #0 with filling factor v=1v? < 1 represents
interest because in this region of parameters a metastable
dielectric liquid phase does exist. It is formed by the Bose-
Einstein condensed magnteoexcitons with kl/~3—4 and
with different from zero motional dipole moments p= [% X
Z]I?. This state was revealed in Ref. [9] considering the
system of electrons and holes on their lowest Landau lev-
els, without addressing to excited Landau levels (ELLs),
but taking into account the coherent excited states, when
one e—h pair exits from the condensate leaving all another
pairs in their coherent pairing state.

The correlation energy was calculated beyond the
Hartree-Fock—Bogoliubov approximation (HFBA)*3 in
the frame of Keldysh-Kozlov—Kopaev method*>?} using
the Nozieres Comte approach.!”!8

The Bose-Einstein condensed magnetoexcitons mov-
ing as a whole with wave vector k and with parallel
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Fig. 7. The energy spectrum of elementary excitations of magnetoexci-
tons and acoustical plasmons in the case when concentrations corrections
haven’t been taken into account. (a) The wave vector of BEC magne-
toexcitons equal to 0. (b) The wave vector k is different from zero, but
the filling factor equals to zero.
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each other motional dipole moments p have a significant
polarizability which gives rise to attractive interaction
between them and which lowers on the energy scale the
values of the chemical potential and of the mean energy
per one e—h pair. But this lowering is not monotonous and
at some value of the filling factor v? the relative minima
on the corresponding curves appear with positive com-
pressibilities in their vicinity. The relative minimum on
the chemical potential curve depends essentially on the
damping of magnetoexciton level. It was investigated in
the Ref. [10] and is represented in Figure 8.

If the average filling factor v* is less than v? the
dielectric liquid phase will exist in the form of droplets
with optimal concentration inside them n, =v?/27I}
corresponding to filling factor v2.

The collective elementary excitations are calculated in
the conditions k/~3—4 and v*~v;, when the ground
state of the magnetoexcitons is similar with the metastable
dielectric' liquid phase.

Evenin-collinear  geometry the diagonal self-energy
parts 2,,(]?4—5, w) with i=1,2,3,4 and kl=3,6 can not
becalculated analytically at arbitrary values of the relative
wave vector ¢. By this reason we will obtain the analyti-
cal expressions in the case k/~3.6 and gl <1 <kl using a
series expansions on the small values g/ <1 as compared
with k[~ 3.6.

Up till now we have discussed the energy spectrum of
a Bose-Einstein condensed magnetoexcitons in pure ideal
conditions which take place in the case k=0, when the
interactions in the electron-hole system are reciprocally
compensated at arbitrary values of the filling factor v> #£0,
as well as in the case k#0, when the nonlinearity is com-
pletely neglected putting v=0. In the last case taking into

laccount the nonlinearity v?>#£0 we can observe its unusual

influence on the earlier discussed energy spectrum lead-
ing to its qualitative new and principle changes. They are
b

00 7 ———————

Dimensionless chemical potential

o d e | EPRr—— |

0.0 02 04 06 08 1.0
Filling factor v2

Fig. 8. Chemical potencial of the BEC-ed magnetoexcitons taking into
account the damping 7y of their energy levels.
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different from the simple additions of the concentration
corrections to the exciton branches of spectrum as one
could expect on the base of a simple perturbation the-
ory. Instead of it the influence of the concentration terms
proportional to u*v? entering into the compositions of the
self-energy parts oy,, 0,, and o,, happens to be much
more important. The self-energy parts contain the differ-
ent linear on @ expressions of the type L,(®)=d+ 1 —
E(y+xCosa) which appear in the forms A;/L;(®) and
determine the concentration corrections. For simplicity we
will demonstrate their influence taking into account only
the denominators in the first power. The self-energy parts
oy, and 0,, contain also such denominators in power two
of the forms B;/(L;(®))?, but these terms for simplicity
were neglected in the numerical calculations. The pres-
ence of the unknown frequency @ in the denominators
side by side with another term in numerators leads to
the increasing of the order of the dispersion equation and
of the number of the energy spectrum branches. In our
concrete case the order of dispersion equation is doubled
and instead of three branches of the energy spectrum we
are dealing with six branches. Two of them-are  acous-
tical plasmon branches with energies proportional to the
perturbation theory parameter v?(1—v?) and with differ-
ent £ signs. It was natural to expect the appearance of
these two branches of acoustical plasmon spectrum and
the same takes place with the optical plasmon spectrum.
Unusual behavior happens with the exciton energy and
quasienergy branches which become doubled undergoing
each of them a bifurcation. The new branches have the
form of the previous exciton branch plus or minus one
additional of amount approximately equal to the energy
of the acoustical plasmon with wave vector different from
the wave vector of the exciton elementary excitation by

the condensate wave vector k. The same change takesy

place with the quasienergy exciton branch. The neglected
denominator in power two could create exciton branch
with two acoustical plasmons. The Bose-Einstein conden-
sation with k#0 means that the e—h system is moving
as regards the laboratory reference frame with a veloc-
ity equal to the group velocity V, of the magnetoexcitons,
reflected in the Figure 9.

It means that the terms hvg(i will appear in the disper-
sion relations for all three branches. To create the exciton-
type collective elementary excitations when the ground
state of the system is a dielectric liquid phase with nega-
tive values of the chemical potential w it is necessary to
eliberate an exciton from the liquid communicating it an
amount of energy at least equal to |u|. This values |u| are
equal to 0.31/, and 0.691, at the filling factors v*> equal
to 0.028 and 0.28 correspondingly. Because the concentra-
tion corrections to the energy spectrum in our case appear
in the form of acoustical plasmon energy Aw,p, propor-
tional to the infinitesimal parameter v>(1—v?) two exci-
ton branches have approximately the energies || £Aw p.
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Fig. 9. (a) The dispersion law of the magnetoexciton. (b) The group
velocity V, (k) of the magnetoexciton; y=kl.

The exciton and plasmon quasienergy branches can be
obtained from the exciton and plasmon energy branches
by two successive reflections as regards two coordi-
nate axes. These properties can be observed on the

| Figufe 10.
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Fig. 10. The energy spectrum of elementary excitations of magnetoex-
citons and acoustical plasmons in the case when filling factor of the
lowest Landau levels equals to v>=0.28. The dimensionless wave vector
of the Bose-Einstein condensed magnetoexcitons equals to 3.6.
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5. INFLUENCE OF THE EXCITED LANDAU
LEVELS ON THE TWO-DIMENSIONAL
ELECTRON-HOLE SYSTEM IN A STRONG
PERPENDICULAR MAGNETIC FIELD

The purpose of the present part is the detailed study of the
influence of virtual quantum transitions of the Coulomb
interacting particles from the LLLs to all excited Landau
levels (ELLs). We consider three aspects of the problem:
the influence on the chemical potential of the BEC-ed
magnetoexcitons, on the energy per pair in the composi-
tion of EHL and electron—hole droplets (EHD), as well as
the influence on the wave function and on the energy level
of a single magnetoexciton. The first steps in this direction
were made in Ref. [10].

The full Hamiltonian consists from zero order
Hamiltonian H,, describing the Landau quantization of free
quasiparticles and from the Hamiltonian H,, reflected
their Coulomb interaction as follows

H=H;+Hey, (95)
where
HCoul
1 ) /
=22 2 [Fdpmgmp=s,n’q+s,m)

p.q.sn,m,n’ ,m’
T T
Xanpam qam q+s n',p— 5+E1 h(p’n q,m;p—

CI+S m)bn pbm qu q+sbn =/ s]

-3 Y Fou(p.nig.m;p—s,n’sq+s,m')

psq,sn,m,n’ ,m’'

xa bl b, (96)

n,p~-m,q~m q+a n',p—s

The operators of second quantization a for elec

tron and bmq, g
annihilation in two-dimensional quantum states in:a strong
perpendicular magnetic field.*® In Landau gauge they are
characterized by the numbers n, m of Landau levels and
by wave numbers p, g enumerating the N-fold degenerate
single particle states. N=S/(2mI?), where S is surface
area.

The matrix elements of the two-particle Coulomb inter-
action V), are determined as:

np? np

F_i(p,n;q,m;p—s,n';q+s,m’)

= [dp, [dpoys, By () Vit (W) 41, (B)
©7)

From the Coulomb interaction part we separate the
Coulomb interaction within the LLLs denoted as H5X: and

Coul
the terms of the types
F_;(0,p;0,q;5n,p—s;m,q+s) ©8)
Fi_i(n,p;m,q;0,p—s;0,q+5)
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for holes describe their creation and !

which describe the virtual quantum transitions from the
initial states n=m =0 to excited Landau levels (ELLs)
n,m=#0 as well as their return back. All these matrix ele-
ments were calculated starting with the quantum numbers
n=0,1,2,3,4. On this base the generalized formulas, were
deduced for arbitrary values of n and m. The cumbersame
expressions are dropped. The part of Coulomb interaction
containing the matrix elements (98) is named as HE-5. The
another parts of (96) are neglected.

The terms of the type (98) were excluded from the
Ham1lt0n1an (96) by the aid of unitary transformation®
U=¢", where S=35 and is determined from the equation

i[H,, S]+HE =0 (99)

Coul —

The new transformed Hamiltonian H.g is determined as

Hy = ELL<O|€7iSI:Ieis |0>ELL

LOI;JIIA—F2ELL<0|[H5()I;.lIf’S]|0>ELL (100)
Here the average is made using the vacuum state for ELL

named, as |0) £ - Heg has the final form

—MeZapap Mth*b +Hegi

_EZd)e e(p Q’s)ap q q+r p—s

p.q.s

1
- 5 Z d)h—h(p’ q’s)b;b;bq+vbp s

P48

_Zd)e h(p Q’S)ap q g+sAp—s

P-4,

(101)

Here*the chemical potentials u, and u, for electrons and
holes are included.

The matrix elements ¢;_;(p, g, s) are determined by the
formulas®’

d)ifj(p, q’Z):Z nhwci—i—mﬁwcj

d)i—j(p? q,z;n,m)
=Y F_(p.0:q.0:p—t.n;q+1,m)
t

xF_j(p—t,n;q+t,m;p—z,0;g+z,0) (102)

Now we will discuss the influence of the supplementary
indirect interaction on the ground state energies of two
collective phases formed by 2D e—h system in a strong
perpendicular magnetic field. One of them is the metal-
lic type electron-hole liquid (EHL) and another one is the
Bose-Einstein condensation (BEC) of magnetoexcitons on
the single-particle state with wave vector k. Both of them
will be discussed below in Hartree-Fock approximation
(HFA). Considering the EHL we started with the effec-
tive Hamiltonian (101) but without chemical potential w,
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and u,. We calculated the ground state energy at 7'=0,
when the average values of the electron and hole numbers
on the LLLs are equal to their filling factor v?

<a;ap>=<b;bp>=v2

(103)

Applying the Wick theorem we obtained the ground state
energy in HFA

Eg=—N,_,[V’[,+v*(2A=B)], N,_,=Nv* (104)

The coefficient A and B are determined in the case
of electrons and holes with equal masses m,=m, and
cyclotron frequencies w,,=w, =w,. In this case one can
write?740

A= Aifj:qui—j(p’q’o)
P

I 2 (nt+m—1)!
- 7Thlw Z:2:2"+”111'm'(n—|-m)
¢ n>1m>1 e
I
= S, §=0481 (105)
Tho,

Here I, is the ionization potential of magnetoexciton within
the LLLs approximation and equals to (e?)/(el)s/7/2,
where [ is magnetic length and ¢ is the background dielec-
tric constant. In a similar way we have**3’

B = BH‘ZZd’H(P’P_S»S)

2 gs mmem o
 mho, i 2" nim! (n+m) - mho,
T =0.2161 (106)
The energy per one e—h pair Egy; in the componence
of EHL in units of [, equals to 21
Egpp 2 21,
— =—v |1+ S-T
I, Tho, ( )

2 1,
=—v <1+0.168—)
hw,

c

(107)

The lowest energy is achieved at filling factor v>=1 and
it determines the energy per pair inside the electron—hole
droplet (EHD) equal to

Egun/L=—(1+0.168r); r=1I/hw, (108)

The ratio r must be less than 1, so to obey the condition
of a strong magnetic field. In the Figure 11 this value was
put 1/2. Now we will discuss the BEC of magnetoexci-
tons on the single particle state with wave vector k#0,
in Hartree-Fock—Bogoliubov approximation (HFBA). As
was demonstrated in the papers®® the BEC can be intro-
duced into the starting Hamiltonian (101) by the help of
the canonical transformation

k, k.
apzuap—l-v(p—?)Bz[_p, bPZqu_v(?_p)aZA—p

(109)
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Fig. 11. Chemical potential in units of binding energy I, versus dimen-
sionless wave vector kl for I;,/hw,=1/2. Solid line: energy per e—h
pair in EHD phase; dashed line: chemical potential of condensed exci-
tons with k=0; dotted line: the same, but for k/=0.5; dash-dotted line:
the same, but for k/=1; dash-dot-dot line: the same, but for k/=3.6.
Reprinted with permission from [37], S. A. Moskalenko et al., Physica E
39/1,°137(2007). © 2007, Elsevier.

where the coefficients are

v(t)=ve ™ Pt =1 (110)

Being transcribed in the operators a;, Bj’,,al,, , the
Hamiltonian (101) after its normal ordering will gen-
erate in the Hartree-Fock—-Bogoliubov approximation
the quadratic expression H, similar with the quadratic
Hamiltonian (39) of the paper,” which contains the coeffi-
cients E(k,v?, u) and ¢r(k,v?, ) defined by the formulas
(40) and (41).° However, contrary to the quadratic expres-
sion of the paper® the generalized quadratic Hamiltonian

H, contains supplementary terms. Dropping the interme-

| diary . cumbersome calculations we can write the new

Hamiltonian H, in a special case m,=m,,, v, =w ,=® .,

 Pe=pa=1/2

Hy = Y [E(k.v%, )+ (B—24)*(1 - 20%)

p

+20(1=v)AM) (g @, +B;B,)

S

+uv<p— %)a‘jﬁfg_p]
x{ = (k,v*, w)+2v*(B—2A+A(k))— A(k)}
(111)

Here A(k) is determined by the sum?’

A(k) = Yo y(p,k,—p,z)e ™

3 IIZe—kzl2 Z (kl)z\n—m|
o7 n!m2l=m(nho,,+mho,,)

n,m
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|:l“((m—|—n—i—|n—m|—}—1)/2):|2
I'(jn—m|+1)

In—m|+1—(n+m)_ e (kl)2 :
x
1B ) )
(112)
In the point k=0 and w,, =, ,=w, we have’’
12
A0 )— osa4 (113)
where G is the Catalana constant (~0.915966).%
Following the formulas (40) and (41)° we have
E(k,v2 p) =202 I, (k) + I, (v* — v*u?) — %(uZ )
k) =2+ (D12 4 (114)

The last brackets in (111) was put equal to zero, what leads
to the compensation of dangerous diagrams, of H,. They
describe the spontaneous creation of the e—h pairs from
new vacuum state and their annihilation in this, vacuum.,
In such a way the chemical potential w in the HFBA was
determined as follows:

/‘LHFB _iex(k)+2v2(3_2A+iex(k)_1])
= —I, (k)+20*(B—2A+A(k)— E(k)) (115)

Here the renormalized ionization potential of magnetoex-
citons I, (k) was introduced:

I (k) =1 (k) + A (k)
Iex(k) :Il _E(k)
Eex(k) = _Iex(k)

Our results are represented on Figure 1. The solid line
determines the energy per e—h pair in the composition
of EHD. The dashed lines represent the dependences of
chemical potentials u(k,v?) for different values of k ver-
sus the filling factor v?. Only the values v> <1/2 are con-
sidered following the criteria of the elaborated theory.”’
At small values of k(kl<0.5) the plotted dependences
w(k,v?) are increasing and the corresponding ground
states are stable in HFBA. At the same time we can notice
that these values w(k,v?) lie on the energy scale not so far
from the energy per e—h pair in EHD. It means that these
states can coexist being realized in different sites of the
sample. From another hand as was shown in Ref. [9] at
considerable values of wave vectors and motional dipole
moments the Bose-Einstein condensed magnetoexcitons
can form a metastable dielectric liquid phase. This pos-
sibility was revealed taking into account the correlation
energy behind the HFBA and the coherent excited states.?
Their influence diminish in the region of small wave vec-
tors, where the influence of ELLs is maximal. In such a

(i16)
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way there are two regions of wave vectors with the pre-
dominant influence of different excited states. In Ref. [41]
was suggested the coexistence of degenerate Bose-gas
with small wave vectors and of the drops of metastable
dielectric liquid phase formed by Bose-Einstein condensed
magnetoexcitons with considerable values of wave vectors
k(kl~3—4). Taking into account the ELLs we arrived to
the conclusion that the metallic-type electron—hole droplet
can coexist with the previous two dielectric gaseous and
liquid phases.

6. COLLECTIVE ELEMENTARY
EXCITATIONS OF TWO-DIMENSIONAL
MAGNETOEXCITONS IN THE
BOSE-EINSTEIN CONDENSATION STATE
WITH WAVE VECTOR k=0

The Hamiltonian of the Coulomb interaction of the elec-
trons and holes in the frame of lowest Landau levels
(LLLs) has the form:

! - .. A
H= 25 Wglp(Q)p(~0) =N, = N,] - .,
0

— N+ H, (117)

where Wé is the Fourier transform of the Coulomb inter-

suppl

action in the frame of LLLs, Ne and 1\7,, are the operators
of the numbers of electrons and holes on the LLLs. They
were determined above. Hguppl is the supplementary indi-
rect attractive interaction between the particle lying on the
lowest Landau levels (LLLs) in view of their virtual transi-
tions on the excited Landau levels (ELLs) and their return
back:*’

II-Isuppl Z¢e e(p q; s)ap q q+_s p—s
2 s
| — A Z¢h h(p Q’S)b;b;bq-%—sbp s
2 pas
- Z¢e h(p q; S)a;b; q+s p—s (118)
p.q.s
Here the creation and annihilation operators ap,ap for

electrons and b(‘], bq for holes were introduced. The matrix
elements of indirect interaction ¢, ;(p,q,z) are described

by the common expressions®’

(bi—_,’(ﬁ,q,s):zw

119
wm Ao +mho,; (119)

In the case of electron—electron and hole-hole interaction
the expression (119) has the form:*’
¢:i(p.q,z;n,m)
=Y W W, exp(ic(p—qg—0)I)

t,K,0
xexp(io(p—qg—t—2)1) (t+ik)" ™" (t—z+io)" ™
(120)
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but in the case of electron-hole interaction is:

()befh(p’ q,7n, m)
=N W W, exp(i(k+0)(p+q)I°)

t,K, o
x (t+i)"(t—ik)"(t—z+io)" (t—z—io)" (121)
where
W, = L&ef((sukl)ﬂ)/z
T gy SVt k2 (122)

14

sk = Wfs,fk = Wfs,k = Ws,fk
The Hamiltonian (119) is a hermitian conjugate form, if

the requirements are fulfilled

¢?_j(p_s,q+s;_S):d)i*j(p’q;s)’ i9j26,h

(123)

Their Fourier transforms are

zpi_j(s,U):Z(E,«_j(s,x)exp(ikalz) (124)
The Hamiltonian (118) written in the terms of the single
particle operators a;, a,, b;, b » has been transformed to the
form containing the two-particle operators of the electrons
and holes densities p,(Q) and p,(Q) of the type

p.(Q)= ZeiQyt[-ale/Za“er/Z
t
12
N (_’ _ iQx-llzbf b ( 5)
Pu(Q)=2_e """ b,y nbi_o
t

The relations between two sets of operators are:

i l . .
apfs/Za[H»s/Z = N Zpe(s’ K)exp(_lelz)

N @

)
Il

2

| .
a;aqﬂ =5 XK:ﬁe(s, K)exp (—qu12 - %12>
(126)

where N=5/(2m(?), S is the layer surface area and [ is
the magnetic length. Here the 8-symbol Kronecker was
used

%Zexp(ip(U—K)lz)=8k,(a',K) (127)

P
The Hamiltonian of supplementary indirect attractive inter-
action (119) has the form:

1 A 1
Hyppt = EBHN_ ﬁgdf,‘—i(s»a')

X [ﬁe(_s’ _U)ﬁe(s’ 0-) +,6h(_s7 _U)ﬁh (Sv (T)]

T 5.~ (5,0
n (128)
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| ;
NZﬁe(—s, K)exp (—iKplz—i— ﬂl2> i

Instead of density operators for electrons and holes we
can introduce their in-phase and in opposite-phase linear
combinations

p(0)=p.(0)—p(—0)
D(Q)=p.(0)+p,(—0)
5.(0)=3[4(0)+D(0)] (129)
5 0)=3[D(-0)-5(-0)]
They lead to the following relations
p(—=0)p.(0)+p,(—0)p,(0)
—[H(-0)(0)+ D(-0)D(D)]
S 4. (Q)[H(=0)D(0)~D(-0)p(0)]
0
=34, (Q)[p(—0)D(0)—D(0)p(—0)] =0
(@)

and to the final expression

T L
I_Isuppl = EB,,,N_R§V(Q)p(Q)p(_Q)

1 Ao oA o
—RZQ:U(Q)D(Q)D(—Q) (130)

where
U(Q) = l!fm‘(Q) + d’efh(Q)

V(Q) =t (Q)—,_,(Q) (131)

i &
The estimations show that

WO=24_; VO)=0. S UG)=B, +A0)
0

It means that one can suppose the dependences

UQ)=U(0)e @2 v(Q)=v(0)=0  (132)

The starting Hamiltonian in QATA has the form
A 1 - - N ~ A A
# = EZWQ[p(Q)p(_Q)_Ne_Nh]_l‘LeNe_l‘LhNh

— VN (ed" (k) +e " d(k))
1

_B. .
+2 —1

¥ g LV @O0
1 A oA o
4y ZU@DOD(0) (13)

The density fluctuation operators (129) with different wave
vectors P and Q do not commute, which is related with
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the helicity or spirality accompanying the presence of the
strong magnetic field. They are expressed by the phase fac-
tors in the structure of operators (125). The vector-product
of two 2D wave vectors P and Q and its projection on the
direction of the magnetic field appears, when their commu-
tations are calculated. These properties considerably influ-
ence structure of the equations of motion for the operators
and determine new aspects of the 2D electron-hole (e—h)
physics.

The equation of motion for the creation and annihila-
tion operators d*(P),d(P) and for the density fluctuation
operators (73) will be deduced, when the BEC takes place
on the state k=0. They are:

Ld =
=[d(P), #]
=(—f+E(P)—~A(P)d(P)

- p .12 g ey =
—2iZW(Q)sm<%) 5(0)d(P—0)
3

—%ZU(@)%(%) D(0)d(P~0)
0

D(P

~

— W/ Ne'#8,,(P,0)+ e (134)

3

., d =
lhEdT(—P)
=[d'(=P), 7]

=(fi—E(~P)+A(=P))d"(—P)

N @

0 |
DUy (%) 4'(~P~0)D(~0)
0

—i¢@

+7v/Ne 5, P.0)—je

ih%ﬁ(f))
=[p(P), %]
=—iZW(Q)Sin<—[PX2Q]le>
0
x[p(P—0)p(0)+p(0)p(P—0)]
Jr%%u(é)sn(—[lD XZQ]ZV)

x[D(P—0)D(0)+D(Q)D(P-0)]
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, four interconnected retarded Green’s functions at 7=

+zizvv<é>s1n(%)d*(—ﬁ—@ﬁ(_—é) N

d
—(D(P), 7]
——ixw@sin( ) 500~ 0)
0

+D(P—-0)H(0)]

i . . ([PxQlLP
+W%U(Q)SIH(T

)[é@)ﬁ(ﬁ—é)
+p(P—0)D(Q)]+27V/N[e#d(P)—e*“d"(—P)]
Here
7= (Ee (k) —w)v=(E(k) = A(k) — @)
E, (k)=E (k)= A(k)=—I,— A(k)+E(k)
Eex(k) = _Il +E(k)

E(K)= ZXQ:WQSinZ <—[K XzQ]le)

p=p+1; v=v* N,=v'N
~ 1
WQ)=W,——V
(Q)=Wo—3V(Q)

AKR) =3¢, y(p,—p—k,,s)e "

=%Z¢efh(Q)eXp(i[k>< 01.1%) (135)
(Y]

Following the equations of motion (134) we will introduce
035:36

G, (P,0)=((d(P,1); X1(P,0)))
i G(P,1)=({d"(~P,1); X1(P,0)))

Gla(ﬁ,t)=<<%;ﬁ(ﬁ,0)>> (136)

G.(P,1) =<<% XT(ﬁ,O)>>

They are determined by the relations (83), where H is the
Hamiltonian (133).

The equations of motion for the Green’s functions in
a special case, when the BEC of magnetoexcitons takes
place on the state with k=0, are:

(hw+id+f—E(P)+A(P))G, (P, w)
JRp . ([Px Q]

—C—2iY W(Q)sin [ L 2ZEL
lXQ: 1n< 5 )

X ((p(Q)d(P=0) X)),
415
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_ %XQ:U(Q)COS (—[P sz]le )

x ((D(Q)d(P—0) |X)),+ TG, (P,w)e’
(hw+i8— ji+E(—P)—A(—P))G,(P,w)

e . ([PxQ].P
=C+2iy W(Q)Sin| ——
PS5
x((d"(=P—-Q)p(-0) X)),

+ %((dT(—P—Q)D(—Q) X)), = 7G4 (P, w)e ™™
(hw+i8)G4(P,w)

=C— i%VV(Q)Sin (W)
y <<p(P—%p(Q) . P(Q)f:/(;— Q) |X>>w

i . ([PxQ].I>
+ m%U(Q)Sm <—2 )

» <<D(P— Q)D(Q) | D(Q)D(P-Q)
VN VN

(hwo+i8)G,(P,w)
PxQ].I*
=)

:C—iZVV(Q)Sin<[
Q

D(Q)p(P—0Q)  D(P—-0)p(Q)
(PP 'X>>,,,

i . ([PxQ].2
+ m%U(Q)Sm <—2 )

D(Q)p(P—-0)  p(P-0)D(Q) A\
x<< A0 ,oF-0) |x>>
+27i[¢ TG (P, )~ €¥ Gy (P, )]

)

w

(137)

Using Zubarev’s procedure® for the Green’s function
we obtain a closed system of Dyson equations for the
Green’s functions in the forms:

4
Y Gj(P,w)S,;(P,w)=Cy; k=1,2,3,4

J=1

(138)

The self-energy parts 3, jk(ﬁ,w) entering into the formu-
las (138) contain the different average values of the two-
operator products. They were calculated using the ground
state wave function |g[1g (0)) taken with k=0 and have the
expressions:

(D(Q)D(—0Q))=4u>v*N
a=—A(0)+2v(B, ;—2A, ,+A(0))
(D(Q)d(~Q)VN)=(d"(@)D(~Q)VN)=~2ur’ N
(d(0))=(d"(0))=uvv/N; 7i=—(A(0)+@)v
416

(139)

All these averages are extensive values proportional to N
or +/N, they essentially depend on the small parameters
of the types u?v? or uv®, or uv.

The cumbersome dispersion equation is expressed in
general form by the determinant equation:

det|3,;(P,w)|=0 (140)
Substituting the self-energy parts 3, jk(lg,w) of the equa-
tions (138) in the formula (140), we will observe that the
determinant equation (140) disintegrates in two indepen-
dent equations. One of them concerns only to optical plas-
mons and has a simple form

S (P 0)=0 (141)

whereas the second equation contains the self-energy parts

Si1s 2005 2ags 2ias 241> 24> 2ap and the quasi-average
constant 7

211(13?0")222“_;;‘1))244t(13§‘1’)
—241(13;(1))222(15;w)214(13;w)

—242(ﬁ;w)211(ﬁ;a))224(]3;w)=0 (142)

The solutions of the dispersion Eq. (142) will be discussed
in two limiting cases. One of them is the point v*>=0,
where the system behaves as an ideal Bose gas and another
case of v?> #0.

All contributions to the self-energy parts contain the
averages (D(Q)D(—Q)),(D(Q)d(—Q)ﬁ),(d(O)) which
do not vanish in the point k=0. The 2D magnetoexci-
ton system now is not at all a pure ideal gas. It was an
ideal gas when the influence of ELLs was neglected. This

,unusyal result was revealed for the first time by Lerner

and Lozovik®’ and was confirmed by Paquet et al.® In the
cdse v? =0 because the vanishing of the averages (139) the
self-energy parts become

0, (P,w)=ho—E(P); a+A(0)=0

0y, (P,w)=ho+E(—P); #=0

A(P)~A(0) (143)

O (13 w)=ho;

044(f’,w) —hw; 12=0; k=0
and the excitonic part of the dispersion relation as well the
acoustic plasmon frequency look as

hw(P)==xE(P)

B, (P) = hawo(P) =0 (144)
The acoustical and optical plasmon branches have the fre-
quencies equal to zero. This case is presented in Figure 12.

The solution of Eq. (142) is presented in Figure 13. The
surprising results is that the spectrum of elementary exci-
tations is doubled. We can say that this results reflects the
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Fig. 12. The energy spectrum of elementary excitations of magnetoex-

citons in the case when concentrations corrections haven’t been taken
into account, the filling factor equals to zero.

Fig. 13. The exciton branches of the energy spectrum of collective ele-
mentary excitations of the Bose-Einstein condensed magnetoexcitons on
the wave vector %:o, calculated in HFBA, using the self-energy parts
of the Eq. (138) at the filling factor v*>=0.1.

existence of the quasi-energy complexes in system. One !

of curve is an elementary excitations of magnetoexcitons,
but another one corresponds the elementary excitations of
magnetoexcitons plus energy of Bose-Einstein condensed
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Fig. 14. The dispersion law of optical plasmon branch in the presence
of the BEC of magnetoexcitons on the wave vector k=0, calculated in
HFBA, using the self-energy part %;;(P,w) (138) and the filling factor
v?=0.1.
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Fig. 15. The dispersion law of acoustical plasmon branch in the pres-
ence of the BEC of magnetoexcitons on the wave vector k=0, calculated
in HFBA, using the self-energy parts (138) and filling factor v*=0.1.

magnetoexciton with wave vector k=0 determined by the
value of the chemical potential.

The optical - plasmon dispersion law, presented in
Figure 14, is gapless with quadratic dependence in the
range of .small wave vectors and with saturation-type
dependence in the remaining part of the spectrum. The
acoustical plasmon branch, presented in Figure 15, reveals
the absolute instability of the spectrum in the range of
small and intermediary values of the wave vectors. In the
remaining range of the wave vectors the acoustical plas-
mon branch has a very small real value of the energy spec-
trum tending to zero in the limiting case of great wave
vectors.

7. CONCLUSIONS

I A review paper presents the results received last years
in the jtheory of Bose-Einstein condensation of two-
dimensional magnetoexcitons. The system of high-density
electron—hole pairs created on the surface of the semicon-
ductor mono-layer in a strong perpendicular magnetic field
is considered. A new metastable dielectric liquid phase
formed by Bose-Einstein condensed 2D magnetoexcitons
on the single-particle states with different from zero, suf-
ficiently large values of the wave vector k was revealed
in conditions, when the electrons and holes are situated
on the lowest Landau levels (LLLs) and the interaction
between the motional dipole moments in-plane parallel ori-
ented perpendicular to the wave vector k gives rise to the
attraction between magnetoexcitons. This phase is due to
the polarizability of the BEC-ed magnetoexcitons, which
appears taking into account the Anderson-type coherent
excited states existing in the frame of LLLs. Its value is
proportional to the coherence factor, being different from
zero in the case k0, in spite of its vanishing value in
the point k =0. The polarizability has a resonance denom-
inator containing the magnetoexciton ionization potential
I, (k), which vanishes in the limit k — co.
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The chemical potential of the Bose-gas in these
conditions was determined beyond the Hartree—Fock—
Bogoliubov approximation (HFBA) taking into account the
correlation energy. It has a nonmonotonous dependence
on the filling factor v? of the LLLs and reveals a relative
minimum with positive compressibility in its vicinity. This
state does exist in the range of parameters v>~ Sin*v and
kl~3—4, where [ is magnetic length. All these peculiari-
ties disappear when the BEC takes place in the point k=0,
when the 2D magnetoexcitons behave as an ideal Bose-
gas, if the influence of the excited Landau levels (ELLs)
is neglected.

The influence of the ELLs on the quantum states of the
electrons and holes lying on the LLLs is due to their vir-
tual quantum transitions to ELLs and return back. These
virtual quantum transitions were taken into account in the
frame of the second order perturbation theory consider-
ing the matrix elements of the Coulomb interaction cal-
culated with the wave functions of the ELLS as ja/small
perturbation in comparison with the matrix elements calcu-=
lated with the wave functions of the LLLs. Our deduction
of the effective Hamiltonian describing the supplemen=
tary, indirect interaction between the particles lying on
the LLLs takes into account that two particles during the
Coulomb scattering process as a first step perform the vir-
tual quantum transitions to ELLs and as a second step they
return back to LLLs. Such quantum transitions depend on
the distance between the Landau levels and the supple-
mentary indirect interaction is characterized by a small
parameter 1,,(0)/hw, equal to the ration of the magne-
toexciton ionization potential I, (0) to the Landau quanti-
zation energy Aw,. This parameter decreases as H~'/? with
the increasing of the magnetic field strength H. The sup-
plementary electron—electron, hole-hole and electron~hole
indirect interactions are attractive. The quantum averages
of these terms in Hartree approximation lower the ener-
gies of the quasiparticles making, for example, the magne-
toexcitons more robust. At the same time their exchange,
Fock terms as well as the Bogoliubov u—v transformation
terms give rise to a positive, repulsion-type contributions
to the chemical potential of the BEC-ed 2D magnetoexci-
tons with wave vector kK =0. Their ground state energy and
chemical potential obtained in a Hartree—Fock—Bogoliubov
approximation (HFBA), have increasing dependence on
the filling factor v?, what stabilize the BEC, permitting to
avoid its collapse and to discuss the collective elementary
excitations arising in this conditions.

The collective elementary excitations were discussed in
both limiting cases. One of them is the Bose-gas of 2D
magnetoexcitons in a state of BEC with wave vector k=0,
and the another one is the metastable dielectric liquid
phase (MDLP) formed by BEC-ed magnetoexcitons with
wave vectors kl~3—4.

The collective elementary excitations were calculated in
the frame of the perturbation theory with the infinitesimal
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parameter v*(1—v?) equal to the product of the filling
factor v* on the phase space filling factor (1—uv?) reflect-
ing the Pauli exclusion principle. The breaking of the
gauge symmetry was introduce following the Keldysh—
Kozlov—Kopaev (KKK) method?*?* in combination with
the Bogoliubov quasi-average theory approximation.*' The
equations of motion were written for the integral two-
particle operators describing electron and hole density fluc-
tuations as well as the creation and annihilation of the
magnetoexcitons. The infinite chains of the equations of
motion for the Green’s functions were truncated following
the Zubarev method.?® The collective elementary excita-
tions in both limiting cases of BEC with k=0 and kI~
3—4 consists from exciton and plasmon branches. There
are energy and quasienergy branches related with the exis-
tence of the condensate. In the collinear geometry of exci-
tation the four order dispersion equations disintegrates
in two equations, one of the third order for the exciton
and-acoustical plasmon branches and another one for the
optical plasmon branches. ;Side by side with the sepa-
rate exciton and plasmon branches the mixed exciton—
acoustical plasmon as well as two exciton excitations
appears, when the self-energy parts containing the fre-
quency in the denominators are taken into account.
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